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The Io west laser-Raman active accordion 
(A L R) type oscillations in crystalline 
polymers 

The longitudinal accordion-type mode (LAM) 
frequencies o f  crystals o f  linear polymers with the 
chains perpendicular to the lamella surface are 
imagined as corresponding to the longitudinal 
eigenfrequencies o f  an ideally elastic rod o f  length 
D having the maximum amplitude at its ends. In 
such a case the eigenmodes have a wavelength X = 
2D, 2D[2, 2D/3 . . . .  Among them only those cor- 
responding to Xl, X 3 . . . h a v i n g  a node in the 
centre of  the rod are Raman active. They can be 
labelled ALR1,  ALR2 . . . .  since only these 
wavelengths XRn, frequencies VRn = Cae/XR, or 
wave numbers V~n[eovt are observed in the laser- 
Raman scattering experiment. Here cac = (E/P) 1/2 
is the sound velocity and Copt = 3 x 10 s msec  -1 
is the light velocity. The ratio of  the corresponding 
eigenfrequencies or wave numbers is expected to 
be 1:3:5: . . . .  Small deviations can be easily 
attributed to end groups, chain folds, strong repul- 
sive forces, and similar small effects which shift 
the eigenfrequencies of  the elastic rod to a lower 
value if they contribute a mass, and to a higher 
value if they contribute an additional restoring 
force. 

The experiments agree to a large extent with 
this view if one is concerned with linear polymers 
having a zig-zag conformation in the crystal lattice 
and, hence, a very high axial elastic modulus. 
Strobl and Eckel [1] report on linear polyethylene 
(PE) wave number values v ~  = 24.2 _+ 0.3 cm -1 
and v~2 = 6 9 . 0  -+ 1 cm -1. Their ratio is 2.85 
which is so close to 3 that one does not  worry too 

much about the model. The situation deteriorates 
a little if one considers the true maxima of  
polarizability derivatives which according to 
Krimm and Hsu [2] shifts the ALR1 wave number 
to 24.9-+ 0.3 cm -1 thus yielding for the ratio of  
the second to the first accordion-type Raman 
frequencies the value, 2.77 which is a little further 
away from 3 than 2.85. 

The situation is much less satisfactory with 
polymers which crystallize with the chains in 
helical conformation, as for instance poly- 
propylene (PP) [3] ,  polyoxymethylene (POM) [4],  
and poly(ethylene oxide) (POE) [5].  The ALR1 
wave numbers differ so much from those calculated 
for independent elastic rods with the known 
density Pc and elastic modulus E e that one has to 
consider the addition of  restoring forces at the 
ends of  the crystalline rods [6] or the coupling of  
rods through the amorphous layers [6, 7] .  It 
turned out that the model of  coupled rods repro- 
duces the data in a simpler manner and in better 
agreement with the physics of  the system [7].  

The first and second ALR scattering wave 
numbers were measured on PEO. Shepherd and co- 
workers [8 -10 ]  report v~l = 9.2 -+ 0.3 cm and 
v~2 = 19.0 + 1 cm -1 with the ratio 2.06 which 
differs so much from 3 that it is certain that 
something must be wrong with the model. The 
situation becomes still more extreme if one 
calculates the true maxima of  polarizability deriva- 
tive which, according to Krimm and Hsu [2],  
shifts the wave number v~l by 10% and that of  
v~2 by 3% to higher values. With the so-corrected 
values, v~l -= 10.12 +- 0.3 cm -1 and v~2 = 19.57_+ 
1 cm -1 , one has the ratio vrt2/VR1 = 1.93 -- 0.15 
which is even lower than 2. 
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It turns out, however, that these data can be 
easily interpreted by the model of coupled rods 
with purely elastic response of the crystalline rod 
and the amorphous layer between consecutive rods 
[7]. The period of the structure is L, the long 
period as derived from small-angle X-ray scattering. 
The volume crystallinity of  the system is av = D/L. 
The Raman active eigenmodes have a node in the 
centre of the rod and one in the centre of the 
amorphous layer. The nth harmonic ALRn has 
2 ( n -  1) additional modes if one labels the basic 
mode with two nodes as the harmonic mode with 
n = 1. The boundary condition for the ALR type 
of oscillation reads 

tan y = -- u tan zy 

y = 2~r(DI2)/X = Or/2)(D/D') 

u = (pcEc /Pas  1/2 

Z = (lD)(paEe/peEa) 1/2 

= ( 1 / ~ v  - 1 ) ( p J p c ) u  

l = L - - D  

D' = X/2. 

Note that the inactive oscillations are obtained if, 
in the boundary conditions (Equation 1), one 
changes the sign in front of  u and/or replaces u by 
1/u. In such a way one obtains, for each number 
of  nodes per period L, two LAM oscillations. Only 
one among the four eigenmodes corresponding to 
2 n - - 1  and 2n nodes is a Raman active mode 
labelled as ALRn because only in the 2nth oscilla- 
tion does one fmd one node in the centre of the 
rod and one in the centre of  the amorphous layer 
as is necessary for Raman activity. 

This becomes evident by considering a very 
rough approximation which, although not 
numerically exact, shows the trend expected. In 
the hypothetical case of equal density of the 
crystalline and amorphous layers, Pc = P~, one can 
easily study the influence of the elastic modulus 
ratio, Ec/Ea, on the laser-Raman active oscilla- 
tions of the coupled rod system as shown in Fig. 1. 
If  this ratio is 1, the whole section containing the 
crystal core of  thickness D and on each side an 
amorphous layer of  thickness //2 oscillates as a 
uniform unit. One has the wavelengths 2L, 2L/2, 
2L/3 . . . .  as shown in Fig. lb. The first two 
Raman active modes have the wavelength 2L/2 

2D/6 ~ ~ ALR3 

(a) 
Ec/Ea=0 

~ ~  2D-- ALRll 

.~_D- L 

: ~  2 D I ~ ~  

' ' f l  

(bl (c) 
Ec=Ea Ea=0 

Figure 1 The longitudinal accordion modes (LAM) with a 
node in the centre of the amorphous layers, and the 
Raman active oscillation modes (ALR) of the coupled rod 
model for Ee/E a= 0 (a), Ee =Ea (b) and of the 
independent rod model (c). In all cases it was assumed 
that Pc = Pa, av = D/L < 1. The Raman active oscillations 
have a node in the centre of the rod. 

(ARL1) and 2L/4 (ARL2) with the ratio of  the 
corresponding frequencies PR2/PR1 or wave 
numbers PR2/VR1 equal to 2 and not to 3 as 
expected for freely oscillating independent rods. 

The same ratio is obtained in the case when the 
elastic modulus of  the amorphous component is so 
high that the ratio Ec/E a goes to zero. In such.a 
limiting case the amorphous component does not 
oscillate at all so that the boundary between the 
crystalline rod and the amorphous layer is a node 
of the oscillation. This yields the longitudinal 
accordion-type eigenmodes with the wavelengths 
2D, 2D/2, 2D/3, 2D[4 . . .  (Fig. l a). Since D is 
smaller than L the wavelengths are shorter and the 
corresponding frequencies higher than in the case 
of  equal Ec and E a. The first two Raman active 
oscillations have a wavelength 2D/2 (ALR1) and 
2D/4 (ALR2). Their ratio is again 2 and not 3. But 
note that the eigenfrequencies are very much 
different in both cases, proportional to 1/L in the 
former (Fig. lb) and in I/D in the latter case (Fig. 
l a ) .  

In the other extreme of the very soft amorph- 
ous layer with Ec/Ea going to infinity, the coupled 
rod model does not yield any oscillation of the 
crystalline rods because practically all the oscilla- 
tion energy is concentrated in the amorphous 
layers. With increasing Ec/Ea ratio, the oscillation 
amplitude of the rods goes to zero. In such a case 
the coupled rod model cannot be applied. The 
rods practically do not oscillate and all the nodes, 
besides the central node of the crystal, are in the 
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amorphous layers. The situation is the complete 
reverse of the case Ee[E a = 0 shown in Fig. la. 
The eigenfrequencies of such a system have 

practically nothing to do with the thickness of the 
crystalline areas. They depend only on the 
goemetry of the amorphous layers in exactly the 
same manner as the eigenfrequencies at Ee[Ea = 0 
depend on the geometry of the crystalline layers. 

In the limit Ea/E e = 0, the crystalline sections 
are completely independent of each other. They 
actually oscillate as individual rods without any 
coupling among them. Hence one obtains from the 
actual wavelengths of  the LAM the values 2D, 
2D/2, 2D/3 . . .  (Fig. lc). The first two Raman 
active nodes correspond to a wavelength 2D 
(ALR1) and 2D/3 (ALR2). The wave numbers of 
the LAM eigenfrequencies of the isolated rod are 
identical to those of the coupled rod with E a 
infinitely large. But their elongation pattern and 
hence their Raman activity is completely different 
so that the wavelengths of ALR1 and ALR2 of 
both cases do not agree. In the case of coupled 
rods with E a = ~o each even LAM oscillation is 
Raman active while in the case of independent 
rods only the odd LAM oscillations are Raman 
active. The same difference shows up in the ratio 
of the wave numbers which is 1 : 3 : 5 . . .  in the case 
of  independent rods, and 1 : 2 : 3 . . .  in the case of a 
very large elastic modulus of the amorphous 
component which couples the oscillations of the 
rods. 

One sees that the main effect of the coupling of 
oscillating rods is the shift in the Raman activity. 
While with independent rods the Raman active 
LAM oscillations have the odd indices 1,3,  5 , . . . ,  
the coupling makes the LAM oscillations with even 
indices 2 ,4 ,  6 . . . .  Raman active. As a conse- 
quence, the ratio of the frequencies or wave 
numbers of the first two ALR frequencies is 2 and 
not 3 as in the case of freely oscillating elastic rods. 
With higher Ec/Ea ratio this value must go from 2 
to 3 because in the limit of every high Ec/E a ratio 
the actual oscillation approaches that of indepen- 
dent rods. This transition cannot be performed on 
the coupled rod model with purely elastic 
amorphous and crystalline medium. One has to 
introduce the more complicated viscoelastic 
mechanical response of the amorphous layer in 
order to be able to extend the coupled rod model 
sufficiently close to the limit of  isolated rods. The 

viscosity of the amorphous medium must be so 
high that except that at the centre of the 
amorphous layer no other nodes can develop, and 
at the same time the elasticity must be so low that 
no substantial coupling is to be considered. The 
results of  such a model will be published soon. 

From this extremely rough estimate one 
concludes that the observed * * P R 3 / P R 1  values will be 
between 2 and 3 depending on the ratio Ee/E a. 
This is in good general agreement with experimen- 
tal data which in the case of  PE and PEO show a 
value below 3. In Fig. 2 are plotted the results 

v~{2/v~tl and vs versus E J E  a calculated for 
Pe = 1.23 and Pa = 1.12 gcm -~ corresponding to 
PEO. The parameter is the volume crystaUinity 
av = D/L. All curves pass through the value 2 and 
3, respectively, at Ee[E a = Oa/Pe = 0.9106 which 
makes equal the dynamic rigidity Ep of the 
crystalline and amorphous component. At such a 
point the whole section with the length L oscil- 
lates as a uniform material with one node in the 
centre and one at the boundary of the section 
without any dependence on the crystallinity. The 
higher nodes are equally spaced through the whole 
medium, i.e. at a distance L/2n. 

Before one starts to compare the theoretical 
predictions with the experimentally observed 
values one has to consider the limitations of the 
coupled rod model. The first one concerns the 
location of the nodes which besides that in the 

4.0 4.0 

~ v = . 8 / /  ",, ,, 

2.sF \ ,~/_,/o.s "/ \ 2.s -- \ 

1 ~ . 3  -. " 7 / \  \ 2 o ~ \ \ , , ,  \ ~.o 

.01 0.1 1 10 100 

Figure 2 The ratios * * * * vR2/VR1 and function of VR3/VR1 as 
Ee[E a for Pc-- 1.23 and pa = 1.12gcm -3, corresponding 
to PEO with the volume crystallinity c~ v = D/L as the 
parameter. Broken lines represent the cases where at least 
one node on each side of the central node is in the 
amorphous instead of in the crystalline layer. 
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centre of  the amorphous layer, are supposed to be 
all located inside the crystalline core of  the 
sample. There is no problem with the basic ALR1 
oscillation which has only one node in the crystal 
and one located in the centre of the amorphous 
segment. But with very low crystallinity some of 
the nodes of ALR harmonics which are supposed 
to be inside the crystal may be situated outside the 
crystalline core. This happens as soon as the wave- 
length of the second ALR oscillation is larger than 
D. With the third ALR oscillation the condition is 
XR3 > D/2, with the nth ALR harmonics XR,, > 
D/(n -- 1). Since such cases have to be excluded the 
results obtained in such regions are marked in Fig. 2 
by a broken line. One sees that with the lower av 
the excluded area extends from Ee/E a = oo down 
to a lower value of this ratio. At the smallest av = 
0.1 practically all the range of this ratio is excluded, 
i.e. for all the values Ee/Ea considered, the new 
nodes are situated outside the very small crystal 
and hence do not represent a possible oscillation 
mode of the system. A good picture about this 
effect can be derived from the graphs in Fig. 1 
In the case of Ee/E a = 0 all the nodes are always 
inside the crystal. In the case Ee/Ea = 1, the 
crystallinity a,, = 2/3 just keeps the nodes up to 
ALR3 inside or at the outer boundary of the 
crystalline rod. Any higher eigenmode has at least 
one node at each side of the rod outside the 
crystal and hence has to be excluded. This happens 
earlier with lower av. 

The other concern relates to the intrinsic 
limitation of the coupled rod model at high values 
of the ratio Ee/E a. As already mentioned, the rods 
in the limit E a ~ 0 are completely independent 
without any coupling and hence do not oscillate at 
all. In approaching this limit the major part of the 
energy of oscillation is concentrated in the 
amorphous layers while the crystals oscillate with 
such a low amplitude that they are practically at 
rest. Hence the coupled rod model fails at high 
Ec/E a ratio and does not yield at this limit the 
independent rod results with the ratio UR:/UR~-- 
3 and ~'R3/UR1 = 5. The failure occurs earlier with 
lower crystallinity av, i.e. with a larger difference 
between D and L. In the plots of URE/UR1 and 
u~t3/u~ in Fig. 2 this situation starts to show up 
in the falling off of the curves corresponding to 
fixed crystallinity. The fall off prevents the curves 
approaching the above-mentioned limits of 3 and 5. 

One sees that the effect is most conspicuous at 
small a,,. At large av the upward trend extends 
over a larger range of Er values so that one can 
guess how the limits 3 and 5 will be approached. 
The maximum of the PI~3/P~I and PR3/PR1 curves 
moves to higher Ec/E a values with higher crystal- 
l inty.  This effect can be understood if one con- 
siders that the development of a large amplitude of 
the oscillation in the amorphous layer is made 
easier by a large width IlL = (L --D)/L = 1 --av of 
the layer. If  the layer is very thin, av close to 1, a 
higher Ec/Ea ratio must be approached in order to 
achieve the same oscillating energy. 

This type applies no limitation to the small 
values Ec/E a < 1 because in such a case the major 
part of the oscillation is in the crystal core and 
only a minor part in the more rigid amorphous 
layers. Hence, one can accept without reservation 
"the PR2/UR1 and VR3/t)R1 curves in the region 
from Ee/E a = 0 almost up to the falling off of  the 
curves at Ee[E a > 1. 

With the above corrections in mind one sees 
'that the ratio PR2/PR1 starts with the value 2 atl 
very small ratio Ec/Ea, becomes slightly smaller 
than 2 when one approaches EcPc/Eap a = 1 and 
goes to the limit 3 at Ec/E a = oo. Similarly the 
ratio v~3/P~a starts with the value 3 and after 
EcPc/EaP a = 1, approaches the limit 5 of  freely 
oscillating rods. The influence of the crystallinity 
is minor in the whole range of interest of Ec/Ea 
between slightly below 1 up to infinity. Since it 
has been shown previously that the u~l values of 
PEO are in good agreement with the known value 
of Ec = 10 GPa if one takes av = 0.7 and E a 
between 20 and 30 GPa, one expects that the same 
parameters will also yield the observed ratio 
Pp, a/PRI = 1.93 +0.15. It turns out that such a 
value is indeed obtained at E J E  a between 1/2 and 
1/3.5 which yields E a between 20 and 35 GPa in 
very good agreement with the former analysis of 
ALR1 of PEO. 

The situation with PE is a little different 
because the volume crystallinity 0.8 and the Ec/E a 
ratio about 25 locate the system in the area where 
the coupled rod model with purely elastic 
components fails to represent the physical situa- 
tion sufficiently well. The PR2/PR1 curve fails off 
at Ec/E a = 6. Hence the ascending section of the 
curve does not extend far enough to include the 
PE sample. However, one sees that the envelope of 

2997 



J O U R N A L  O F  M A T E R I A L S  S C I E N C E  1 4  ( 1 9 7 9 ) . L E T T E R S  

the ascending sections of the curves corresponding 
to av above 0.6 steadily approaches the supposed 
limit 3 corresponding to freely oscillating rods. 
Hence, from a rather general point of  view the 
location of P~2/P~I = 2.83 or 2.77 between 2 and 
3 is in perfect agreement with the results of  the 
coupled rod model as represented in Fig. 2. More- 
over, the proper density ratio Pa/Pc = 0.853 shifts 
all the lines in Fig. 2 to the left which makes the 
agreement still better. The smaller value, 2.77 at 
Ec/Ea=25 or even at EJEa = 17 is indeed 
located on the common envelope steadily rising to 
the limit 3 of the free rods corresponding to E a = 0. 
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The role of  nickel in the one-coat vitreous 
enamelling system 

In the industrial enamelling of ferrous metals it has 
always been necessary to add other metals, nickel 
and cobalt, to the system to obtain a satisfactory 
enamel-metal  bond, i.e., one which failed in a 
cohesive manner. In the two-coat system these 
metals are added as oxides, "adhesion oxides", to 
the glass frit and in one-coat enamelling a thin 
layer of nickel 'is applied to the steel prior to the 
application of the enamel slip. There is evidence 
that this nickel deposit should be discontinuous to 
achieve a satisfactory bond between the enamel 
and the metal [1]. The precise function of this 
nickel flash has not been satisfactorily explained, 
but more recent publications suggest that it acts in 
at least two ways. When present the flash increases 
the proportion of Fe304 in the oxide scale which 
forms on the steel surface prior to the fusion of 
the enamel [2, 3].  Also the crystallographic 
structure of the nickel-iron alloy which forms 
during the later stages of firing is believed to 
promote good adherence [2,4]. These explanations 
which require particular chemical or physical 
conditions at the interface are not satisfactory in 
view of the demonstration by Klomp that bonds 
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which fail cohesively could be formed between 
ceramics and metals without the aid of an inter- 
mediate layer at the interface [5]. The work 
reported here suggests that the nickel flash 
promotes bonding because it prevents the 
accumulation of hydrogen at the enamel-metal 
interface rather than its influence on the oxidation 
of the steel or the crystallographic properties of the 
alloy formed with the iron. 

In a systematic investigation of the one-coat 
enamelling system various alterations were made in 
the pretreatment of the metal, including omitting 
the nickel flash. The differences observed are 
deafly shown in Fig. 1. Where the nickel flash 
was present the normal enamelling reaction 
sequence occurred; during the initial stages of 
firing the surface of the steel is oxidized by the at- 
mosphere, the enamel then fuses, dissolves the 
oxide scale and further oxidation of the steel then 
occurs. This latter stage is accompanied by a 
marked roughening of the enamel-metal interface 
and the iron oxide formed in this second stage also 
diffuses into the enamel layer. In the absence of a 
nickel flash only the first stage oxidation had 
taken place and a separation of the two layers had 
occurred, resulting in a 30 pm gap. This gap must 
have formed when the enamel dissolved the 

0022-2461/79/122998-03502.30/0 �9 1979 Chapman and Hall Ltd. 


